SMdata↩
Outline↩
- non-field theory (Halzen)
- Introduction to SM
- External/Internal Particles
- Interactions and Feynman Rules
- QED
- QFT (Peskin)
- \(e^+e^-\to\mu^+\mu^-\)
- Feynman Diagrams
- Dirac Algebra
- Crossing Symmetry
- Helicity Structure
- \(e^+e^-\to\gamma\gamma\)
- \(\tau\to W b\)
Introduction↩
- QFT
- Spontaneous symmetry breaking
- Perturbative region
- Non-perturbative region
- Renormalisability SM: \(SU(3)\otimes SU(2) \otimes U(1)\) color and broken electroweak
- Particle content of SM
- 3 generation for the spin-\(\frac{1}{2}\) fermions
- spin-\(1\): \(g,\gamma,Z,W^\pm\)
- spin-\(0\): Higgs
- Expending Lagrangian
- Dark matter
- Neutrinos Oscillate
- Matter and anti-matter asymmetry
Scattering↩
\[\text{Cross-Section}\approx \text{Scattering likelihood} \times \text{Scattering configuration} / \text{Incoming flux}\]
\[d\sigma_{AB\to fX}^{\text{Theory}}=\frac{\sum_{ndf}|A_{AB\to fX}|^2d\phi_{fX}}{2S}\]
Here \(\phi\) means the phase space.
- Amplitude
- \(A(I\to F)\sim \sum_{l} g^2\sum(l~\text{loops for feynman diagrams})\) \(g\) is the \(g\) coupling constant
- \(l=0\) tree level
- Identify Feynman diagram
- Apply Feynman rules
- \(A=\sum_{i}F_i\) - \(F_i\) Feynman diagram
- \(|A|^2\)
QED↩
Klein-Gordon Equation↩
\[-\frac{\partial ^2 \phi}{\partial t^2}+\nabla^2\phi = m^2\phi\]
Here \(\phi(x,t)=Ne^{-i\rho^\mu x_\mu}\) and \(E^2=\vec{p}^2+m^2\), the \(\vec{p}\) is a three vector
Dirac Equation↩
\[\partial^{\mu=0,1,2,3}=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right)\]
最后更新:
2023年9月8日